On excess filtration on the Steenrod algebra

نویسندگان

  • ATSUSHI YAMAGUCHI
  • Atsushi Yamaguchi
چکیده

The theory of unstable modules over the Steenrod algebra has been developed by many researchers and has various geometric applications. (See Schwartz [6] and its references.) It was so successful that it might be interesting to consider the structure of the Steenrod algebra which enable us to define the notion of unstable modules. Let us call the filtration on the Steenrod algebra defined from the excess of admissible monomials the excess filtration. (See 1.7 below.) We note that this filtration plays an essential role in developing the theory of unstable modules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the X basis in the Steenrod algebra

‎Let $mathcal{A}_p$ be the mod $p$ Steenrod algebra‎, ‎where $p$ is an odd prime‎, ‎and let $mathcal{A}$ be the‎ subalgebra $mathcal{A}$ of $mathcal{A}_p$ generated by the Steenrod $p$th powers‎. ‎We generalize the $X$-basis in $mathcal{A}$ to $mathcal{A}_p$‎.

متن کامل

A note on the new basis in the mod 2 Steenrod algebra

‎The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations‎, ‎denoted by $Sq^n$‎, ‎between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space‎. ‎Regarding to its vector space structure over $mathbb{Z}_2$‎, ‎it has many base systems and some of the base systems can also be restricted to its sub algebras‎. ‎On the contrary‎, ‎in ...

متن کامل

Invariant elements in the dual Steenrod algebra

‎In this paper‎, ‎we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$‎, ‎where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$‎.

متن کامل

A Fractal-Like Algebraic Splitting of the Classifying Space for Vector Bundles

The connected covers of the classifying space BO induce a decreasing filtration {B,) of H, ( B O ;212) by sub-Hopf algebras over the Steenrod algebra A. We describe a multiplicative grading on H*( B O ;212) inducing a direct sum splitting of B, over A,, where {A,) is the usual (increasing) filtration of A. The pieces in the splittings are finite, and the grading extends that of H,R2S3 which spl...

متن کامل

Deconstructing Hopf Spaces

We characterize Hopf spaces with finitely generated cohomology as algebra over the Steenrod algebra. We “deconstruct” the original space into an Hspace Y with finite mod p cohomology and a finite number of p-torsion EilenbergMac Lane spaces. One reconstructs X from Y by taking extensions by principal H-fibrations. We give a precise description of homotopy commutative H-spaces in this setting an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009